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We develop a unified theoretical framework for tile anisotropic Kondo model 
and the boundary sine-Gordon model. They are both boundary integrable 
quantum field theories with a quantum-group spin at the boundary which takes 
values, respectively, in standard or cyclic representations of the quantum group 
SU(2)q. This unification is powerful, and allows us to find new results for both 
models. For the anisotropic Kondo problem, we find exact expressions (in the 
presence of a magnetic field) for all the coefficients in the Anderson-Yuval 
perturbative expansion. Our expressions hold initially in the very anisotropic 
regime, but we show how to continue them beyond the Toulouse point all the 
way to the isotropic point using an analog of dimensional regularization. The 
analytic structure is transparent, involving only simple poles which we deter- 
mine exactly, together with their residues. For the boundary sine-Gordon 
model, which describes an impurity in a Luttinger liquid, we find the non- 
equilibrium conductance for all values of the Luttinger coupling. This is an 
intricate computation because the voltage operator and the boundary scattering 
do not commute with each other. 

KEY WORDS:  Quantum impurity; Luttinger liquid; Kondo problem; 
integrable. 

1. I N T R O D U C T I O N  

One-dimensional quantum field theories with gapless bulk excitations and 
boundary interactions display a wide range of interesting characteristics. 
They exhibit crossovers between Fermi-liquid and non-Fermi-liquid 
behavior, they can be successfully treated by a variety of powerful and 
interesting techniques, and they can be realized experimentally. 
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The classic example of such a system consists of electrons interacting 
with dilute impurities in a metal, which can be described by the Kondo 
model. This system is actually three-dimensional; it can be described by a 
one-dimensional model because with dilute enough impurities, the inter- 
esting physics occurs in s waves around each impurity, and one can restrict 
attention to the radial coordinate. This model has a variety of experimental 
realizations, and has been the focus of much attention in the last 30 years 
(see refs. 1 and 2 and references therein). Of recent interest is the problem 
of an impurity in a Luttinger liquidJ 31 A Luttinger liquid (interacting elec- 
trons in one dimension) may be realized in a one dimensional wire or by 
the edge of a fractional quantum Hall deviceJ 4~ A fractional quantum Hall 
device is made by putting an electron gas trapped in two dimensions into 
a strong transverse magnetic field. When the Hall conductivity is locked to 
its plateau value, the current flows only along the edges of the device, and 
the system can be described effectively by a one-dimensional theory. 
Experiments have been done on the conductance through a point contact 
(which is the impurity in the theory) in one of these devices ~5~ and they 
agree well with theoryJ 6" 7~ 

The objects of our attention in this paper are one-dimensional models 
with interaction on the boundary only. We concentrate on two such models, 
the one-channel Kondo model and the massless boundary sine-Gordon 
model. The problem of an impurity in a Luttinger liquid can be mapped 
onto the latter. Moreover, when the bulk degrees of freedom are integrated 
out, both describe problems in dissipative quantum mechanics: f81'2 a 
particle moving in a double well for Kondo (an infinite number of wells for 
boundary sine-Gordon) with a dissipative environment. 

In this work, we show that the Kondo model and the boundary sine- 
Gordon model can be treated in the same theoretical framework. Both can 
be reformulated as a free boson on the half-line interacting with a spin on 
the boundary, where the spin is in a representation of the "quantum- 
group" algebra SU(2)q. This algebra, as we will discuss below, is a one- 
parameter deformation of the ordinary SU(2) algebra. In the Kondo model 
the spin is in a standard spin-j representation, while for the boundary sine- 
Gordon model the spin is in a "cyclic" representation, a quantum-group 
representation which has no analog in ordinary SU(2). We will find a simple 
relation between the partition functions of the two models. The relation is 
established through the use of the trace of the quantum monodromy 
operator, an object generating the conserved charges of the quantum KdV 
system) ~~ Having this relation, we can relate quantities in one model to 
quantities in the other model. For  example, the perturbative coefficients of 

: For subsequent developments see ref. 9. 
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the partition function of the spin-l/2 Kondo model are expressed in terms 
of ordered integrals which are difficult to evaluate. This relation yields an 
expression for these coefficients in terms of known coefficients of the 
boundary sine-Gordon model. ~11~ 

The starting point of the theoretical analysis is a one-dimensional 
quantum theory at a fixed point of the renormalization group. This means 
that the system has no mass scale, so there is no gap in the spectrum. Such 
a model can be described by a (1 + 1)-dimensional massless quantum field 
theory. The issue of the boundary conditions in these models is not a 
nuisance, but in fact can be of crucial importance. Basically, most of the 
physics which can happen in the bulk can also happen on the boundary 
alone. Studying boundary behavior is not only simpler mathematically, but 
it can also be easier to observe experimentally. There are very few experi- 
mental probes of one-dimensional quantum systems, and the ones mentioned 
above are both boundary effects. 

A boundary fixed point is a point where the boundary condition does 
not destroy the scale invariance of the bulk; the methods of boundary con- 
formal field theory are applicable here. However, an interacting boundary 
condition as in both the above systems will introduce a scale to the 
problem, which we generically call Ts (in the Kondo problem this is often 
referred to as the Kondo temperature TK). Although by definition bulk 
effects in these models do not depend on this scale, boundary effects of 
a system at non zero temperature can now depend on the dimensionless 
parameter T / T  B. Varying this parameter allows one to interpolate between 
different boundary fixed points. For example, in the Kondo problem at 
T / T B  ~ or, there is a boundary fixed point where the impurity decouples. 
As T / T  s - ,  0, one approaches another boundary fixed point where the elec- 
trons bind to the impurity. (The properties of the low-temperature fixed 
point are far from obvious; it took years of effort to establish them.) For 
the boundary-sine Gordon model, the fixed points correspond to Dirichlet 
and Neumann boundary conditions on a boson; which is the high-tempera- 
ture one and which is the low-temperature one depends on the boundary 
coupling. 

The field theories we discuss have the special property that they are 
integrable, as are many one-dimensional theories. As a result, we can do 
many calculations exactly. In this paper, we mainly discuss the partition 
function and free energy. However, transport properties (which are experi- 
mentally measurable) can also be computed exactly/7' l_,~ The methods we 
will describe enable one to study these systems for all values of the 
coupling--near and far from the fixed points. Other methods generally rely 
on perturbation theory around these fixed points. Another advantage, for 
example, is that in the Luttinger problem one can compute transport 
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properties such as the conductance even out of equilibrium. Standard field 
theory techniques are not applicable; the best one can do is use the Kubo 
formula to calculate the linear response near V--0. 

The models discussed here can be treated as a boson where the one- 
dimensional space is a half-line. The only interactions take place on the 
boundary. The bulk Hamiltonian takes the form 

1 f: f: H0 = ~ g  d ~ [ H Z + ( O ~ $ ) 2 ] + ~  d~O,$ (1.1) 

The first model we discuss is the boundary sine-Gordon model. The boundary 
Hamiltonian is 

HBsc = 2v cos q~(0) (1.2) 

In this case, the parameter V of (1.1) plays the role of a physical voltage, 
while v is related to the boundary scale T B in a manner to be discussed 
below. 

The second model, the one-channel anisotropic Kondo problem of 
spin j/2, can also be expressed in this form using the well-known technique 
of bosonizationJ t3~ We ignore the charge sector of the Hamiltonian, which 
does not interact with the spin and decouples from the problem. The total 
Hamiltonian is then H =  Ho + Hi, where the boundary interaction is Hj = 
'~-~i . . . . . . .  ~, z I i J i g i .  Here, Si is the impurity spin on the boundary, J i  a r e  the 
fermion currents, and It are the coupling constants. The problem is anisotropic 
when I: :~ I,. = I,.. In the bosonized language, the boundary Hamiltonian 
becomes 

H j  = 2( S +  ei'k<~ --} - S_  e -i,~lo~) (1.3) 

We have replaced the original parameters I.,.=/,. and I_ with g and 2; 
g parametrizes the anisotropy ( g =  1 is the isotropic case and g =  1/2 is 
called the Toulouse limit), while 2 oz [I.,-I- The precise relation is not 
universal, so we will not need it here. The J_S_ term has been absorbed in 
a redefinition of g. Traditionally in the Kondo problem, one takes the 
matrices Si to act in the spin-j/2 representation of SU(2) [in (1.3) and in 
all that follows we use the convention that eigenvalues of S. are integer, so 
they, e.g., take values S_ = _+ 1 in the spin-l/2 representation]. However, 
for the problem to be integrable, one must instead take them to act in the 
spin-j/2 representation of the quantum group SU(2)q, 

qS: _ q -  s: 
[S : ,S+_]=-1 -2S+ ,  [ S + , S  ] -  _, (1.4) 

q - - q  
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where q - - e  i=g. In the isotropic case q = - 1 ,  this reduces to the usual SU(2) 
algebra. The distinction between SU(2) and sg(2)q is not important  for 
j =  1 or j = 2  at arbitrary q, because the spin-l/2 representation remains 
the Pauli matrices and the spin-1 representation is also the same up to a 
rescaling of S+ and S . In the following, the Kondo model of spin j /2  is 
defined to be the model with the q-deformed algebra, so it can be identified 
with the "physical" Kondo  model only for j = 1, 2. In the Kondo models V 
corresponds to an external magnetic field. 

We consider the system in imaginary time compactified on a circle of 
length 1/T, with T the temperature. Defining the partition function via the 
trace ~ .  = Tr  exp[ei'~ps:(Ho + H j ) / T ] ,  we introduce Zj = ~ . ( 2 ) / ~ ( 0 )  and 
ZBSC=~BSC(2)/~BSG(0). In the following, we often use the variable p 
defined as 

.Vg 
t T -- 27rp ( 1.5 ) 

Most of the following computat ions are well defined only when p is an 
integer. The consideration of real (physical) voltage or magnetic field 
requires analytic continuation, which we discuss. 

The dimension of the vertex operators e • is g. For  example the two- 
point function on the boundary is (calling r the imaginary time) 

s i n  - 2g (ei,/,io. rle_i4,(O,r,)) = It" 7 r T ( r -  r ')  (1.6) 

with h" the frequency cutoff arising from the normal ordering of the 
operators e -+i~. We will denote the case 1/2 < g <  1 as the repulsive regime 
and 0 < g < 1/2 the attractive regime; "attractive" and "repulsive" are the 
corresponding types of fermion interactions when one fermionizes this 
model into the Luttinger model. 3 The Toulouse limit g = 1/2 corresponds, 
of course, to flee fermions. For  g > 1 the vertex operators are irrelevant, 
and the model is best approached by using a "dual" picture. ~3~ 

The paper is organized as follow. In Section 2, the attractive regime is 
described. Results are obtained to all orders in perturbation theory using 
Jack symmetric functions for the boundary sine-Gordon model. Then, 
making use of the monodromy matrix, we give a relation between this 

3 In the quantum wire problem (an impurity in a Luttiuger liquid) where one starts with elec- 
trons on a full line, the entire domain 0 < g <1 corresponds to repulsive interactions 
between the physical electrons. There is a rescaling of the coupling when one maps the 
model onto the half-line/7~ 
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latter model and the Kondo models. In the last part of this section, the 
thermodynamic Bethe ansatz is used to provide nonperturbative results in 
both cases. In Section 3, the repulsive regime is explored. There the pertur- 
bative coefficients of the partition function diverge and a regularization is 
needed, which usually is provided by a high-frequency or short-distance 
cutoff. We show, using the explicit expressions discussed in Section 2, that 
these divergences can also be controlled by analytic continuation from the 
repulsive regime, an analog of dimensional regularization. Coefficients for 
the free energy can be obtained in this fashion all the way to g =  I; at 
particular values of g there are poles, and we compute the residues exactly. 
These results are in agreement with computations using the Bethe ansatz in 
the repulsive regime, where the poles result in logarithmic terms in the free 
energy. In Section 4, the relation between models is extended to nonzero V. 
This gives the perturbative coefficients in Kondo model as a function of 
magnetic field. Moreover, it yields the previously unknown conductance for 
the boundary sine-Gordon model at all values of g. Some final remarks are 
collected in the conclusion. 

2. THE A T T R A C T I V E  REGIME AT ZERO VOLTAGE 

In this section we review earlier results for the anisotropic Kondo 
problem at zero magnetic field and the boundary sine-Gordon (BSG) 
model at zero voltage and with g < 1/2. There are three useful and com- 
plementary approaches, all of which we will later extend to finite magnetic 
field (resp. finite voltage) and to g > 1/2. 

We first discuss how to expand the partition function in powers of the 
interaction strength. For the Kondo problem, this was first considered long 
ago in refs. 14 and 13, where the coefficients of this expansion were 
expressed as multiple integrals. These integrals are rather complicated, and 
until now had not been evaluated explicitly except in very special limits. 
The partition function in this form is equivalent to that of a one-dimen- 
sional gas of positive and negative charges with logarithmic interactions 
(equivalently of a two-dimensional Coulomb gas on a circle). For the 
boundary sine-Gordon model, the perturbative expansion is formally very 
similar, but not identical. In that case, the multidimensional integrals can 
be explicitly evaluated, using recent results for symmetric polynomialsJ ~11 
We note that this is the only known perturbative expansion for the Kondo 
problem. Similar-looking expansions have been employed in the Anderson 
model, but even though the Anderson model reproduces the Kondo model 
in a particular limit, these expansions are applicable only to the Anderson 
model very far from the Kondo limit. 
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The second approach uses integrability, albeit in a rather abstract way. 
We define the trace of the "quantum monodromy operator, ''tl~ whose 
expectation value gives the Kondo or BSG partition function, depending 
on which representation is chosen, t15"~6~ Using some properties of this 
operator, we are able to relate the Kondo partition function to the BSG 
one. As a result we are able to evaluate the integrals in the Kondo expan- 
sion explicitly, using the already evaluated BSG ones. t~s" 16) 

The third approach uses integrability in a more standard way. We 
describe the model in terms of interacting quasiparticles and their scattering 
matrices. The thermodynamic Bethe ansatz (TBA) can then be used to 
derive the free energy and related quantities for the Kondo model 1~'21 and 
for the BSG model, t ~Tj The direct relation between the partition functions 
can be rederived, at least for values of the coupling g = 1/t, t integer. The 
TBA approach has the disadvantage that at nonzero temperature the 
integral equations derived are not continuous in g (although the final 
results of course are). However, it has the advantage that it allows trans- 
port properties such as the current and conductance ~7'~2~ and the zero- 
temperature noise ~81 to be computed for the BSG model. (For  Kondo, 
only the zero-temperature magnetoresistance has been computed. I11) Some 
simple relations have also been derived relating transport properties to 
equilibrium properties; ~lt~ we generalize these in Section 4. 

2.1. Pe r tu rba t i ve  A p p r o a c h  

The partition functions Zj and ZBSG can be expanded in powers of 2 
and v, respectively. The term of order 2 2'' or v 2" involves a correlation func- 
tion of n vertex operators e ~* and n vertex operators e -;*, all living on the 
boundary. These multipoint functions, evaluated in the free-boson theory 
and by Wick's theorem, are reduced to a product of two-point functions 
like (1.6) (see, e.g., ref. 19 for a review). The problem then becomes formally 
equivalent to a two-dimensional Coulomb gas with positive and negative 
charges restricted to live on a one-dimensional circle. To calculate the 
partition function, we must integrate over the locations of the charges. The 
integrand is then the scaled correlator 

~2,,( {/../i} ' {/,/ti} ) 

I-I;< j 4 s in ( (u , -  u y 2 )  sin((u' i-  u~.)/2)I "-g 

I-I,, j 2 sm( (u , -u ) ) /2 )  I 
(2.1) 

822/85/1-2-15 
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The difference between the Kondo model and the boundary sine-Gordon 
(BSG) model lies in the limits of integration. In the Kondo model, each of 
the vertex operators comes with a spin operator; the thermal average of 
monomials of vertex operators are computed as in (2.1), while one has to 
take the trace of the corresponding monomial of spin operators in the 
representation of interest. This puts various contraints on the order of the 
charges. For  example, S+ = S 2_ = 0 when the spin is I/2, so only terms of 
the form S+S_S+S_... survive in the perturbative expansion, and 
consequently charges alternate in sign on the circle. Thus in terms of the 
renormalized parameter x, defined as 

x-7.\--,7- ) 
the spin-l/2 Kondo partition function is t13" 14) 

where 

2 n Z~(x) = 2 + x ~2,, (2.2) 

Qz,,(p)=2I~"du, fi"du', Ii"du2..'Io"du',,..C2,({ui},{u'i}) (2.3) 

The effect of the charge ordering is seen in the limits of integration. Higher- 
spin partition functions have the same integrand, but with the appropriate 
restrictions on charge ordering. For  the boundary sine-Gordon model there 
is no boundary spin, so one has unordered integrals: 

where 

and 

• X 2n I (2.4) ZBsG(X) = 1 + " aSG 2,, 
t im I 

W X a S G - - T \  h" J 

l f~f~dul...f~du',J2,,({ui},{u'i}) (2.5) 12, = 07!) 2 

The lack of ordering makes no difference for n = 1, s o  /2  = Q2 ,  but the 
others are different. 4 

The I~,, were denoted Z2~ in refs. l l  and 15; we change notat ion here to avoid confusion 
with the higher-spin partition functions. 
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The unordered integrals/, ,  can be computed exactly in terms of an n- 
dimensional series t~ I" 

1 (I '[m,+ g ( n - i +  1)]~ 2 ;:,, ,=,I:I ,3+ii/ (2.6) 

where the sum is over all sets (Young tableaux) m =  ( m l ,  m 2 ..... m, ,) ,  with 
integers m,. obeying m~ >~m2 >/ . . .  ~>m,,~>0. For 17 = 1 the series can be 
summed, giving A = F ( 1 - 2 g ) / [ F ( 1 - g ) ]  2. Although this series looks 
quite imposing, it can be generated by a simple recursion relation. We 
introduce the truncated sum A,,(A), which is defined as the sum over m 
with the condition that all mi ~< A. Then it is not difficult to show that 

F(A q-gn) -I2~,,_ll(A) (2.7) 
I,,(A) = I2,,(A- 1 )+  F(g)F(A + 1 + g ( n -  1)) 

These relations allow a precise determination of the partition functions up 
to large orders in the perturbation expansion. 

The boundary sine-Gordon model can be placed in the same frame- 
work as the anisotropic Kondo models. It is enough to discuss the simplest 
case when q is a root of unity (g rational), since, by continuity, the results 
we derive will hold for any q of unit modulus. Suppose therefore qk = _ 1 
for some integer k, and consider a cyclic representation of the quantum 
g r o u p  SU(2)q. 12~ These representations, which are labeled by an arbitrary 
complex parameter & have no highest- or lowest-weight state; the states 
are eigenstates of S+ or S_  to the tth power. They have dimension k, with 
a basis of states Ira) such that 

q,~-,,,12q-(,~-.,I/2 
S+ Im>-- - l  I m + l >  q - q  

q,~+.,/2q-(a+,,,)/2 
S_ Im>= q - - q - '  I ra - - l>  (2.8) 

S: In,> =m Im> 

where states Ira> and Im mod k> are identified, and the fundamental set is 
chosen to be 0, I ..... ( k -  1 ). To obtain the BSG model, we set q~= C and 
let C >  1 and real (so 6 is imaginary). Thus 

~ m/2 

S+ Im>~C - i  Im_+l> (2.9) q - q  



220 Fendley e t  al. 

so in this limit the commutator of S• can be neglected and the traces of 
all monomials become identical: 

( Cql/2~ 2" 
Tr J / /=  k \q  _ q-~J (2.10) 

where J /  is the product of n operators S+ and n operators S_ in any 
order. Thus when evaluating Z6 for Clarge, all the possible orderings of S§ 
and S_ within the trace have the same weight, so 

ql/2 ) q6 
Z6(x)~kZBsG C _,x , =C>>I (2.11) q-q  

This observation allows us, for example, to find the boundary S matrix 
of the BSG model, ca') as we detail in the Appendix. It will also enable us 
to derive many properties of the partition function ZBs~ in the subsequent 
sections. 

2.2. Quantum Monodromy and Fusion 

We introduce the quantum monodromy operators associated with 
these models ~ ~o~ 

Lj(x)= HJ {d"e::~ exp l q-'/zx ~o 

x(e-Zi*L,~)qS:/2S++e2i*L,~,q-S:/2S_)l } (2.12) 

where Hj indicates that the matrices Sj are in the spin-j/2 representation, 
indicates path ordering, and the exponentials are normal-ordered, In this 

formula, PL is the momentum operator appearing in the mode expansion 
of the left-moving field ~bL, 

1--[--dPL(r)=QL + PLr +i ~ a--~e-2i~"r~ 
2rig ,, # o n 

Observe that Lj is an operator acting both on the spin degrees of freedom 
and on the "free-boson" degrees of freedom. By expanding Lj in powers of 
x and noting that with Neumann boundary conditions 2~bL(0, r ) =  ~b(0, r), 
one finds that the partition functions are equal to the eigenvalues of the 
quantum transfer matrices acting on momentum eigenstates P [ p )  = p [ p ) ,  

Zj(x, p) = (Pl tr e'=e'S:Lj(x) IP) (2.13) 
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where the trace is computed over the spin degrees of freedom. At zero 
voltage, p = 0 ;  we define Zj(x)=Zj(x, p=0) .  

As observed in ref. 10, the Lj satisfy the Yang-Baxter equation. Using 
the fusion of quantum transfer matrices, one can prove the identities 

Zj(q~/2x) Zj(q -~/2x) = 1 + Zj_ ~(x) Zj+ ~(x) 

Z~(qlJ+llP-x)Zj(x)=Zj+~(qmx)+Zj_~(q-l/2x) (2.14) 

Z,(r '~+ lV2x) Z6(x) = Z6+ l(ql/2x) + Z,~_ ,(q-l/Zx) 

The first was discussed in ref. 10; the second can by proven by using the first 
and by induction. The last follows using the same technique as in ref. 22 
together with the fusion rules for cyclic and standard representationsJ -'3~ 

Using these relations together with (2.11 ), we can express the boundary 
sine-Gordon model partition function in terms of the Kondo partition 
function. We have, from (2.14), 

(Cq'/2 x)=ZBsG( Cqs/z x)+ZBsG {'Cq-'/2 X) Zx( Cq l/2X) ZBSG \ q_q - ,  \q_q- ,  \-~-q=i 

from which it follows that ~5" 16) 

ZBsG(qx) + ZBs~(q-IX) Zl[(q--q-')x] - (2.15) 
ZBso(X) 

Inserting the perturbative expansions into (2.15) gives the Q2, in terms of 
the already known I2, ,, thus completing the derivation of the perturbative 
partition function for g < 1/2. 

2.3. The Thermodynamic  Bethe Ansatz  

The fusion relations discussed in the previous subsection are one of the 
many consequences of integrability. ~24~ The standard way of approaching 
the problem is to use the Bethe ansatz. Here, one derives integral equations 
which determine a set of functions ej(O), where 0 is a rapidity (the logarithm 
of the energy of an individual particle). The ej(O) can be thought of as the 
energy of an interacting quasiparticle, in the sense that the energy of the 
entire system shifts by Tej(O) when a particle of rapidity 0 is added to the 
system. Moreover, the distribution function is given by 1/[1 +exp(ej)]. 
Many physical quantities can be expressed in terms of these functions. 
Since this approach has been discussed in detail in many places, we start 
with the integral equations and discuss their consequences. For technical 
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reasons,  we consider the case g =  l/t, where t is an integer. The  integral 
equat ions  for bo th  K o n d o  and BSG are given by el' 2. 17~ 

e j = ~ N j k f  ~ dO' t - 1  l n ( l + e  ~kl~ (2.16) 
k _~-~ 2~z c o s h [ ( t - I ) ( 0 - 0 ' ) ]  

where the "incidence mat r ix"  Njk is defined by the d iag ram 

1 2 k _ t--3 ~ + 
, :  a - -  - -  - -  ~ - - c  t - - 2  

where Njk = 1 if the nodes j and k are connected,  and Nsk = 0 if not. The  
solution of  these integral equat ions  is fixed uniquely by demanding  the 
asympto t ic  form 

jn  e o, ej m 2 s i n  e+ ~ e  ~ as 0--* ov (2.17) 

This asympto t ic  form is just  the energy of the individual particle over  T; 
the interact ions become negligible in the large-energy limit (equivalent  to 
sending 2 and v to zero in the Hami l ton ian) .  

The  free energies in this regime for K o n d #  21 (with spin less than  t/2) 
and BSG 1'71 can be writ ten in the form 

F ~ s in[jM2(t-  1)] 
j = I s  ~ t - - 1  )] 

f dO t - 1 ln( 1 + e "s) 
- r ~ c o s h [ ( t -  l i ~ - - l n  Tn/T)] 

(2.18) 

for j = 1 ..... t - 2 together  with F ,_  ~ = 2FBs G and 

TB 
FBSG - -  2 COS[ n/2(t  -- 1)] 

_TjdOe t - 1  In(1 + e " ' - '  ) (2.19) 
2rc c o s h [ ( t -  1) ( O - I n  Ts/T)] 

where e,_ i = e + = e_ 
It has been shown tha t  Eq. (2.16) requires that  ej(O)=ej(O+i2n/ 

(t - l )))251 This means  that  the integrals in (2.18) and (2.19) can be expanded  
as a power  series in (TB/T) 2tt- i)/,, so we see that  the bare  couplings it and 
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v and the renormalized coupling x are proportional to T]-~)/ , .  In fact, for 
BSG, the exact constant was determined in ref. 12, and is, 

v(2zcT'~ g (_~ F{1/[2(1-g)]) ) ' -g  
XBSG--T\ K J =F(g) 2x/,~nF--~g/[271-----~)]i (2.20) 

for any value of g, not just g = 1/t. At fixed T o, the Kondo bare coupling 
2 is related to the bare BSG coupling via a constant to be determined at 
the end of this section: 2 = ~v. This constant ~ is independent of the impurity 
spin considered, as observed in ref. 2. With this relation of x and To, we see 
that the second term in (2.18) or (2.19) is an analytic power series in x, like 
the perturbative partition functions in Section 2.1. 

We must take care in relating these nonperturbative free energies to 
the perturbative partition functions discussed before. The TBA deals with 
excitations over the vacuum; by convention, the ground state (no particles) 
is assigned a vanishing energy and entropy. Therefore, one expects Fj and 
FBSG to be equal to the perturbative partition functions defined previously 
up to a constant shift (which on dimensional grounds must be proportional 
to To) and a term proportional to T. Neither of these changes, e.g., the 
specific heat. This ambiguity is fixed by studying the behavior at To = 0 
and by studying the analyticity properties. From the TBA equations, it is 
simple to derive from (2.16) that as 0--* - o  e, the functions eft0) go to a 
constant, which is 

e~J(-~l= ( j +  1)2_ 1, e~+_(-<~=t_l (2.21) 

Plugging this into (2.18) gives 

F j ( To=O)  = -- Tln(1 + j ) ,  FBSG( T o = 0) = - T i n  t 

This fixes the piece proportional to T. The piece proportional to T o is fixed 
by noticing that because the perturbative partition function is analytic in 
x oc T~s -g ,  the term proportional to To cannot appear here. Thus the 
relation between the perturbative partition functions and the TBA free 
energies is 

sin[jn/2( t - 1)] 
Fj= - T l n Z j +  T o 

cos[ *r/2(t - 1)] 
(2.22) 

To T 
FBsG = -- TIn ZaSG + -- In t 2cos[n/2(t- 1)] 2 
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The role of the shift is simple: it precisely cancels the large TB/T behavior 
of the partition functions. As is easily seen by substituting the asymptotic 
form (2.17) into (2.18) and (2.19), the free energies Fj/T and FBso/T deter- 
mined by the TBA go to zero as TITs---, O. Meanwhile it was shown in 
ref. 11 that - l n  ZBsoocTs/T in this limit, and the relations (2.15) and 
(2.14) indicate that - I n  Zj grows as well. In fact from (2.22) it follows that 

( Ts sin[jn/2( t -  1)]'~ 
Z s ~exp  \ ~ ~ S ]  73 J 

ZBSO ~ ~ e x p  2Tcos[rc/2(t-- 1)] 

Thus we see that although the perturbative partition functions grow 
exponentially for large x, the series expressions are still convergent (they 
actually have an infinite radius of convergence). 

Since we have related the TBA results to the perturbative ones, we can 
combine the the fusion relations (2.14) with the TBA equations (2.16) to 
give much more information. For example, the relation (2.18) gives the 
Kondo partition functions Zj only for j = 1 ..... t -  2, but the remainder can 
be generated from (2.14). The relation (2.22) allows us to write the pertur- 
bative partition functions in terms of the tj very simply. Denoting convolu- 
tion by 

A ,  B ( ~ ) = I  ~ dO 

one has 

in Zj(x) = s,_ l * In( 1 + e'S)(cc), j = 1 ..... t - 2 

In ZBso(~x) = -- �89 t + s,_ l * In( 1 + e ~'-')(cc) 

In Z,_l(x)  =2s ,_ l  * In(1 + e~'-')(cc) 

(2.23) 

where so = a/cosh(aO) and cc = In TB/T. These relations also give immediately 

Z,_ l(x) = tZ~so(~x) (2.24) 

In the following, we often switch from the x variable to 0c, keeping these 
relations in mind. Introduce as usual 

Yj(oO = e ~sl~) (2.25) 
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The Yj are analytic functions of x 2 oc exp[2to~/(t-1)].  1251 From the TBA 
equation for el one finds then Y~(~) =Z2(x)  and from the TBA relation for 
e,_ 1, Y,-i(ct) = Z,_2(x).  The TBA relations for the other nodes then imply 
that 

Yj(Ot.)=Zj+I(X)Zj_I(X), j = l  ..... t - 2  (2.26) 

This simple relation between the TBA and the perturbative partition func- 
tion gives exact perturbative expressions for all the ej. This is consistent 
with the relation (2.24), since the original integral equations (2.16) along 
with (2.23) give Y,_2 = t Z , _ 3 Z ~ s  G. 

We can in fact rederive the results of Section 2.2 at q = e i"/' by converting 
the TBA equations (2.16) into functional equations in the complex a plane. 
Using the identity 

with (2.23) gives 

so(O§ ( + s ,  O - t  = 2 n ~ ( 0 )  (2.27) 

Zj (qmx)  Z j (q- l / zx )  = 1 + Yj(oQ (2.28) 

where j =  1 ..... t - 2 .  Plugging the relation (2.26) into (2.28) recovers the 
fusion relation (2.14) 

Zj(q'/Zx) Z j (q - ' / 2x )=  I + Z j_ , ( x )  Zj+,(x)  (2.29) 

from ref. 9. Once written in terms of the variable q, (2.29) holds for q 
generic, as discussed in Section 2.2. Observe that such a direct proof of 
(2.29) establishes conversely the fact that the relation between TB/T and x 
is independent of spin. 

When q = e i~/t, t an integer, these fusion relations close. 5 We have from 
(2.29) 

Z ,_  l( ql/2x ) Z ,_  l( q-l /2x ) = 1 + Z ,_  ,(x) Z,(x)  

while using (2.27) in (2.23) gives 

1 
ZBsc(~ql/2x) ZBso(~q-rex)  = t [ 1 + Y,_ l(~)] (2.30) 

s A different closure happens in the minimal models of conformal field theory, ~l~ where the 
end nodes t -  2, + and - are removed from the incidence diagram. 
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m t It m = t - 2  

m = t - 3  

m=8 _~ 
Fig. 1. A schematic representation of a cyclic representation of SU(2}q when q is a tth root 
of unity. Up and down arrows represent the action of raising and lowering generators, 
respectively. 

Thanks to the identification Y,_~ =Z,__,  these two relations are com- 
patible with (2.24) if and only if 

Z,(x) = Z ,_  z(x) + 2 (2.31 ) 

The latter relation follows from the quantum group representation. Indeed, 
when q is a tth root of unity, the representation of spin t is reducible 
because S'+ = 0, and looks schematically as in Fig. 1. We see that the states 
with values S. = _+t do not contribute to the trace of any monomial  in 
S+ S_ of non vanishing order. Hence in the perturbative expansion, all 
terms for spin t - 2  and spin t are equal, except the term of order zero, 
which simply counts the number of states. This term differs by two in the 
two representations, and (2.31) follows. 

We can also rederive the relation (2.15) between the Kondo and BSG 
partition functions without using cyclic representations, by using the fusion 
relation from (2.14): 

Zl( ix) Z , _  ,(x) = Z ,_  2(q-t/2x) + Z,(q l/2x) 

Using (2.31), we rewrite the right-hand side as 

1 +Z,_2(ql /2x)+ 1 +Z ,_z (q - ' / 2x )  

which, using Y,_ ~= Z,__, and (2.30), is in turn 

tZBsc( ~x )[ ZBsc( ~ qx ) + ZBsc( ~q-  l x ) ] 
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from which, using (2.24), it follows that 

Zl [ (q -- q-  I ) x] -- ZBsc(qx) + ZBs~(q -Ix) (2.32) 
ZBsc(X) 

together with the fact that  ~ = i / ( q - q - ~ ) .  This value for ~ is obtained 
simply by matching the first order  in the per turbat ion theory, since we 
know that  12 = Q2. 

3. THE REPULSIVE REGIME AT ZERO VOLTAGE 

3.1. Poles and Log Terms in the Perturbat ive  Expansion 

The previous section concerned the attractive regime g <  1/2. This, 
for example, is the regime of  greatest interest in dissipative quan tum 
mechanics, where the particle exhibits oscillatory behavior. The filling frac- 
tions v = 1/(2n + 1) where the edge modes  in the fractional quan tum Hall 
effect are described by the BSG model also lie in this regime. However,  the 
original isotropic K o n d o  model  is at g = 1, and we will see that  there is a 
great deal of  interesting behavior  in the repulsive regime 1/2 < g < 1. We 
will address this regime largely by exploiting some simple analyticity 
properties. In particular, we will show how to obtain an analytic expression 
for the coefficients all the way to g = 1. 

We will show in this section that  if we define the expansion of  the free 
energy of  the spin- l /2  K o n d o  model  as 

~. f2,,x - - T l n ( 2 +  ~, Q2,,x'-"] - T i n  Zj  = T .2n_ 
n = 0  n = 1 

the term f2,,x 2" has a simple pole at g = 1 - 1/(2n), with residue r,_,, = Ts/ 
(2nTn2). The half-integer-spin K o n d o  and BSG free-energy expansions 
have poles in the same places. Moreover ,  when this divergence is regulated 
properly, we find a term -2nr,_,Tlog(TB/T) in the free energy for 
g = 1 - 1/(217). This term yields, for example, a term linear in TB/T in the 
specific heat, indicating that  these values of  g (which include the Toulouse 
limit g = 1/2) are pathological  in some respects. 6 

6 However, notice that now a term T 2"tt-g~ appears in the specific heat expansion at all g; 
the log term is required to make this true at g = 1 - 1/(2n). Thus in this sense the log terms 
are not pathological, but instead make the values g = 1 - l/(2n) more like other values ofg. 
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The first thing to notice is that the integrals (2.3) and (2.5), which 
define the perturbative coefficients 12,, and Q_,, diverge at short distances 
when g~> 1/2; correspondingly, the series expansion (2.6) diverges for 
g >/1/2. There are a variety of ways to regulate the integrals. In a numerical 
approach, this would be done using a cutoff. However, the most natural 
approach here is analytic continuation. This approach, which is very analo- 
gous to dimensional regularization, 126~ means we define the regularized 
integrals as the analytic continuation of their values for g < 1/2. This 
continuation is illustrated by examing the first coefficient, f 2 = - 1 2 / 2 ,  
which we saw in Section 2.1 is given by 12 = / ' (  1 - 2 g ) / [  F( 1 - g ) ]  2. At g = 
1/2, f2 has a simple pole. There are no branch points anywhere, and since 
it is finite for all other g ~< 1, the analytic continuation is perfectly well 
defined. Implicit in the following is the assumption that the regularization 
done for the Bethe ansatz (the cutoff of the Fermi sea for Kondo t2~) gives 
the same results as this analytic continuation from g < 1/2. This assumption 
is certainly physically obvious, since by defining renormalized parameters 
one removes all cutoff dependence from the Bethe ansatz. Moreover, in the 
BSG model one starts directly from the regulated theory with no cutoff 
dependence/2~ 

We now show that the large-TB/T behavior of the partition function 
requires that f~,B, sc~ and f2,, have simple poles at g = 1 -1/(21l) for all n. As 
discussed in Section 2.3, in this limit - T l n  ZBsc behaves like 

2 cos(tog/[ 2( 1 -- g)])  

while - Tin Z~ goes as 

- Ts tan (~-~n~- g~/ 

Our analyticity assumption implies that these hold for g > 1/2 as well. 
Notice that these expressions have a simple pole as g ~  1 -  1/(2n). In the 
TBA free energy this term is subtracted off, as seen it (2.22). Because the 
TBA is finite, this divergence therefore is matched by one in the pertur- 
bative expansion. Since x oc ( T s / T )  l -  g, the t~rmo rcBscl..2,, and f_,,,x 2. are 
proportional to Ts when g = 1 - 1/(21l). Therefore, there must be a simple 
pole in f2,,x 2" at g =  1 - l/(2n), with residue rz, = Tn/(2r~n2T). The pole in 
flBSGI .2,, has residue ( - 1  )"+ l r2,,/2. By the same argument, the free energy 2tt '~ 

coefficients in the spin-j/2 Kondo model when j is odd each has a single 
pole at g = 1 - 1/(2n) with residues r2,,. The free energy coefficients for the 
integer-spin Kondo model have no pole at these values. 
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We can see these poles explicitly by studying the series expansion (2.6) 
for the I2,, in the boundary sine-Gordon model. Initially the series looks 
useless, because it diverges for g >/1/2, and we only know how to resume 
it for I2. However, a first interesting observation is that the series expres- 
sions for the f~,~,SGI converge even where those for the individual I2,, do not. 
This is because some of the divergences in the Coulomb integrals are 
cancelled when taking the connected part. More precisely, we define the 
truncated series I2,,(A) as the expression (2.6) with all m~ ~< A and 

f~4BSG~(A) -- [I2(A)] 2 
2 I4(A) 

Then, using the previously obtained recurrence relation (2.7), one finds 
that 

f~4BsG'(A)--f~4BSG'(A--1)~--2g(1--2g)+ I F(g)-4 A 4g-4 (3.1) 
2(1 - 2g) 

for A large. This expression converges as A ~ m for g < 3/4. Moreover, the 
pole at g = 3/4 is clearly identified, and its residue can easily be computed, 
because the divergence is proportional to that of the zeta function. One 
confirms the earlier result that near g = 3/4 

, 
f4aSG~x4 ~ 16n(g -- 3/4) 

where we used the relation (2,20) to relate x and T~. 
Since (3.1) tells us explicitly how the series diverges, the continuation 

around the pole can be constructed by adding and subtracting a zeta func- 
tion. More precisely, we define the continuation to be 

where 

ft4aso~(oo)_ ~CaSG~reg, , . 2g(1 - -2g)  + 1 " '4  --J4 tovJ+2(l__2g) F(g)4gt - 4 g )  

2g(1 - 2 g ) +  1 
114g  - -  4 fc4aSG)r~g(A)--f~4aSG~(A) 2(1 - -2g)  F(g)4,,=~ 

(3.2) 

The "regular" part f~4 BSGIreg is ft4BSG~ with the diverging part of the sum 
subtracted off. This series converges when A -~ co for g < 1. One can extend 
this result past g = 1 in the same manner. 
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It should be possible to find all the f_,,, for g < 1 in this manner. One 
first writes the higher f,_,,'s in terms of  the 12,, using the relation 

( - 1 ) l(m)-- l(l(m ) _ 1 )! 
fIBso~ = ~ I,~,,~ (3.3) 2n 

where m =  {nh ,  m2 ..... m/,,.I} is a part i t ion of  an integer so that Z m ; = n ,  
I2~,,~ =-12,,, I,_,,,,...., and 2j is the multiplicity of  the integer j in m. We have 
checked that J6r'~BSG~( A)-f~BsG~(  A -- 1) --* C6(g ) A 6g-6 and f~sBSG~(A) -- 
f ~ 8 B s G ~ ( A - I ) - - * C s ( g ) A  8g-8 when A is large, with C6(g), Cs(g ) known 
expressions. Thus poles in r~BSG~ appear at g =  1 -  1/217 for 17= 1, 2, 3, 4 J 2n 

with the appropriate residue. We can then apply the same zeta-function 
method and regularize the sums to go all the way to g = 1. 

We have checked that the numerical values agree very well with the 
Bethe ansatz results. This takes some effort because finding the numbers 
from the Bethe ansatz requires that we numerically solve the integral equa- 
tions, and then numerically fit the results to a power series. Moreover,  at 
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g =  1, we have ZBs~(X)= 1. We plot the results for f~4 BsG~ and f~BSG~ in 
Figs. 2 and 3. We clearly see the pole in the data, and that f~BSG~ and 
f~BSGI do indeed go to zero as g ~ 1. Another interesting consequence is 
that it allows a very simple approximation formula for the f2,, ^- ,-~BSGI for - U t  J 2 n  

g near 1. We approximate the function by its pole plus a constant piece. For 
example, if we define the constant piece by requiring that f_,,,~BsC~(g-- 1)=0,  
we have 

j'~BSG~, �9 F(n--1/2)  I 1 1 2, tgJ ~ 2n + 
2 x/'-~ n-'F(n) F(1 - 1/2n) 2'' 1 - g -  (1/2n) 

The presence of these poles has interesting physical consequences. 
They indicate that the free energy at g = 1 - 1/(21l) cannot be expanded as 
a power series, but has an additional logarithmic term. The TBA free 
energy does not have a divergence, because the pole is subtracted off, as in 
(2.22). However, there is a leftover piece: 
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lim To tan 
g~ 1-,/12,,) 2(l----g) 1 + l/(2n) 

= - 2 n T r 2 , ,  In ( - - -~)+ ... 

Thus the free energy contains a logarithmic correction, arising from proper 
regularization of the divergence. Such terms are not unusual; for example, 
they occur in the bulk free energy of the 2D Ising model and its (even) 
multicritical generalizations/27~ As we will see in the next subsection, the 
existence of the log term also follows from the detailed TBA analysis. The 
fact that the free energy defined by analytic continuation has a simple pole 
at r2,, does not mean that the physical free energy--obtained with a cutoff 
regularization--diverges, but rather indicates that it has a logarithmic 
dependence on the cutoff at that point/26~ 

These results can be checked for several special values of g. In the 
Toulouse limit g =  1/2, the model is equivalent to a free fermion in a 
boundary magnetic field. As discussed in ref. 2, for example, the free energy 
for spin-l/2 Kondo is 

fcC F,= - 2 T  dO 1 ln(1 +e -'~ 
- _~  2re cosh (0 -1n  To~T) 

To + T o  1 - 2 1 n 2 - 1 n ~ - ~ - T l n 2  = 2 T l n  F - 2 T l n  F ~ - ~  7r 

Using the gamma function identity F ( 2 a ) =  F(a)F(a + 1/2)2 2a- l /x/~ and 
the expansion 

1 ff l , , - l l  
l n F  a + ~  =In  + 

n = I 11 ! 

where ~l"'l(x) is the mth derivative of the digamma function ~(x) - F'(x)/ 
F(x), one finds 

(3.4) 

Thus we see explicitly the log term at g = 1/2, with coefficient r2 = 1/2n as 
derived above. Moreover, we see that all the f2,, for n > 1 are finite at 
g =  1/2. This means, for example, that there is a double pole in Q4 at 
g = 1/2 in order for f4 = - Q 4 / 2  + Q~_/8 to remain finite. In fact, this means 
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that there is an nth-order pole in 02,, at g = 1/2 and that it is analytic in 
the neighborhood (and in fact all the way to g = 3/4). Moreover, at g = 1/2, 
FBsc =Ft/2, and we have checked numerically that the values fo,-- 92,,r~Bsc~ 
from (3.4) are obtained by taking the limit of the series expression as 
g ---, 1/2, (2.6). 

A final comment is in order. At the isotropic point g =  1, the BSG 
model is trivial with these boundary conditions, so ZBsG(X)= 1 and 12, = 0. 
Notice that this follows easily from the relation (2.15). However, the 
Kondo problem is not trivial at g =  1 (this is the value of most physical 
interest), but the power series expression (proportional to T~ -g) obviously 
requires modification. The fact that the exponent is vanishing is an obvious 
hint that there are log terms at every order, and indeed this is seen in the 
TBA solution. IL21 Notice that the shift between the TBA and the power 
series has an essential singularity as g ~ 1, so if subtracted appropriately 
from the power series as g---, 1, the result may be finite and give the series 
with log terms at g = 1. We have not yet succeeded in carrying out this 
analysis. 

3.2. The TBA in the Repulsive Regime 

The TBA equations for the Kondo problem in the repulsive regime 
were derived in ref. 2. For technical simplicity, we consider only g = 1 - I/s, 
s ~> 2 an integer. The equations are very similar to those in the attractive 
regime: 

f dO' In(1 + e  -~'1~ (3.5) 
1 

e'i=c~'i'e~ 2re cosh(O-  0') 
k 

where the incidence matrix Njk is as in Section 2.3 with t replaced by s. The 
Kondo free energy is 

f dO 1 In( 1 + e-'J) 
Fj = - T 2--~ c o s h ( 0 -  In Tn/T) 

fdO 1 ln(1 + e  . . . .  t) 
Fs -  1 = - 2 T  2re c o s h ( 0 -  In TB/T) 

(3.6) 

where e § = e_ = es_ 1. Even though the BSG problem is integrable in this 
regime, applying the TBA is difficult technically since now both the bulk 
and the boundary scattering matrices are not diagonal. We will use analytic 
continuation again to provide the BSG free energy. 

822/85/1-2-16 
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Defining this time 

Yj(0~) = e - " ~  

we see right away that  for j = 2 ..... s - 2, 

YI = e - F'-/Te-e" 

Y j = e - - ~ + l l T e - - F j - ~ I r  

Y.~- i = e-Fs_2/T 

(3.7) 

analogous to (2.26). Arguments  identical to those in the attractive case 
require that  Y(o~ + isz~)= y(~)/251 Thus  Y can be expressed as an analytic 
power series in x 2 cz e2~/" = (TB/T)  2~1 -g~ as before. Therefore, (3.7) indicates 
that for j even, Fj + e ~ is a power series in x 2. When  j is odd and s is odd,  
F i is a power  series in x 2 as well, but  for s even and j odd, any other 
term is allowed as well. In fact there is a log term, as discussed in the last 
subsection. 

We can find the log terms at g = 1 - 1/(217) (i.e., s even) directly from 
the TBA, by plugging the power series expansion for Y into (3.6). For  
example, for s = 4  ( g =  3/4), Y~(~)=3  +ae~/2+bet  Then, we see that 

For  TB/T small, this is approximately  

_ i d O  _1_ l n ( 4 + a e ~ 1 7 6  
2re cosh(0 - In Te/T)  4 + ae ~ 

f dO 1 (b - c /2/8)  e ~ 

- 2 n c o s h ( 0 - 1 n T s / T )  4 + a e  ~ 

( a2) Io =4T..____~ b - -~ du u~_ 1 
2nT 1 + u 4 4 + a( Ts /T)  I/2 u 

b a2/8 TB 
- -  TBIn 

4re T T 

One can in fact verify using functional relations analogous  to those above 
and in ref. 11 that  b -  a'-/8 = - 2 ,  so the coefficient is indeed - - 4 r  4 = - - T B /  

(2nT), as shown in the previous subsection. 
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We can now derive the analogs of the fusion relations (2.14). we define 

Zj(x)  = e -6(~')/r 

Zj(x)  = e - Ffi~')/Te-ea 

Using (2.27), we have 

Zj( _q),/2 x )Z j ( (  _q ) - t /2  x ) =  1 + Yj 

j odd 

j even 

= 1 + 2 j _ l ( X )  Z j+l (X  ) (3.8) 

analogous to (2.28) and (2.29) in the attractive regime. The crucial dif- 
ference is that q has been replaced by - q - ~ .  The Zj(x)  are analytic func- 
tions of x 2 for j odd, but for j even they include the log term, so implicit 
in this equation is the prescription - in < Im In y < in. Because the analytic 
continuation of ZJ should still satisfy the fusion relation (2.29), not all of 
the 2 j  can be the analytic continuation of the Zj from the attractive regime 
to the repulsive regime. However, notice that if we make the identification 

sin jn(s - 1 ) / 2  
In Z j ( x ) =  In Z j ( x ) +  - ~  ~os ~-~-- i )-~' 

ln Z j ( x ) = l n  Zj(ix) + 
T B sin jn(s - 1 )/2 

T cos n ( s -  1)/2'  

j odd 

j even 

then the Zj satisfy the fusion relations (2.29). The shift as before cancels the 
pole in In Zj for j odd. Since Zj with j even is a power series in x 2, the effect 
of the argument ix is to flip the sign of every other term. This is merely a 
matter of convention. With our choice q = e i'g, q = 1 for the classical limit 
g---, 0, while q = - 1 at the SU(2) point g = 1. Representations of SU(2)q 
and SU(2)_q-,  are identical f o r j  odd, but they differ by a factor of i in the 
matrix elements of S_+ for j even. The coupling renormalization for j even 
would disappear if we chose to change the quantum group conventions. 

We can now find ZBs~ by analytically continuing the functional rela- 
tion (2.15). Since this relation involves only q and the functions are series 
in x 2, we can replace q by - q - 1 .  With this replacement, all functional rela- 
tions derived in in Section 2.3 apply to the repulsive regime with t replaced 
by s. In particular, we showed that 2FBsc(~x)=F,  ~(x) implies (2.15). 
Since the relation (2.15) for g :/: l determines all of the BSG coefficients I2,, 
uniquely in terms of the spin-l/2 ones Q2,,, given a Z t, it determines ZBSG 
uniquely. Therefore, we can reverse the argument in Section 2.3, and say 
that given (2.15), we must have 

2Fasc(~x) = F.,._ l(x) (3.9) 
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where ~ =i/(q-q -t) as before. This result (without specifying the ~) was 
conjectured in ref. 28. We emphasize that this relation is only true for s 
integer. The relation (2.15) of course is true for any value of g. However, 
the exact result at integer s is very useful, allowing us, for example, to find 
the conductance in the BSG model exactly at these values, without any 
analytic continuation. 

We have checked the result (3.9) numerically at s =  3 (again by com- 
paring analytic continuation results to TBA ones) and find good agree- 
ment. The relation (2.20) still holds in the repulsive regime (the derivation 
of ref. 12 holds for all g), and we confirm also the value of ~. 

An analytic check can be done at the special point g- -3 /4 ,  where the 
boundary sine-Gordon model is equivalent to the Toulouse limit of the 
four-channel Kondo model? 29~ This model can be solved exactly, ~a~ and 
the above results reproduce these. 

4. N O N Z E R O  V O L T A G E  

We now extend the results of Section 2 to allow for nonzero voltage 
in the BSG problem and nonzero magnetic field in the Kondo model. For  
the Kondo problem, the TBA analysis is easily extended to nonzero 
magnetic field) ~'2) The analysis is straightforward because the magnetic 
field couples to a conserved charge, the z component of the spin. Since the 
charge commutes with the Hamiltonian, the same diagonalization applies 
even with a magnetic field. However, in the BSG problem the voltage 
violates the charge conservation. Indeed, this is responsible for the charge 
tunneling in the Luttinger liquid with an impurity, In the presence of a 
voltage in the BSG model, current flows. This is a problem out of equi- 
librium, where transport properties can be computed using a kinetic equa- 
tion.(7. ~. t2, 18) However, the partition function can be formally extended to 
nonzero voltage. As a byproduct, we will find some more information 
about the transport properties. In particular, we conjecture relations for the 
conductance good for all values of g, generalizing the results of g, generaliz- 
ing the results of refs. 7, 11, and 12. 

The partition functions can be expanded in powers of x as before: 

o2_ 

Zl(x, p) = 2 cos pz~ + ~ ,2,, ,x Q2,,(p) 

ZBsG(X, p)= 1 + ~" X2nI2n(p) 
n =  1 

(4.1) 
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where 

f ~O I"r ~0 tn Q,( p ) = du l " " du;, 

1 /.2n 
/ - ' " ' P ) : ~ J o  d u ' " ' f :  ' 'du:'xJ' ' '`{ul}'{u,} e x p ( i p ~ ( u i - u ' i , )  

where p = i g V / 2 n T  is integer. In ref. 11 exact series expressions for the 
I2,,(p) were found for integer p: 

1 ~ f i  l " [ m , + g ( n - i + l ) ] F [ p + m , + g ( n - i + l ) ]  
12,,(p)=l..(g)2 . ,=lF[m,+-l+--~n---i-~F[p+n,i+l+~l-~-._-i~ (4.2) 

where m is defined as in (2.6). As before, this series converges only for 
g <  1/2. 

These results apply only to p integer. We now use (4.1), (4.2) to deJhw 
Z~ and ZBsc for complex p. We conjecture this is the unique analytic 
continuation. This, presumably, could be proven using information on the 
p--, ~ behaviour. Indeed, we know that I2n(p)/T 2''~l-gl has a limit as 
p --, i ~  (where T--, 0). and we assume this applies at real p as well. This 
assumption has been checked with TBA results below. For instance, the 
series that defines I_, for complex p can be summed 

F(g +ml) F(g +ml + p) 
I2(P) = F2(g) F ( l + m l ) F ( l + m l + p )  

ml ~ 0  

sin rcgI'( 1 - 2g) 

- sin :,r(g + p) F ( 1 -  g + p) F(1 - g - p )  
(4.3) 

One can indeed check that this goes like p2~g ~ as p ~  ioo to reproduce 
the zero-temperature coefficient of ref. 12, giving support to our assump- 
tion. Notice that the continuation of I2,,(P) is not even in p, and that 
ZBso(p) is real only for p integer. However, we will see that observable 
quantities like the conductance are given in terms of ZBsc(p). 

The analysis of Section 2.2 can be repeated for p integer and nonzero. 
The fusion relations (2.14) apply without modification for spin-j/2 
representations. The k-dimensional cyclic representation when qk__ _+1 
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also obeys the same relation, but to find the BSG free energy, there is a 
subtlety. We first note that when p ~ 0 we have 

/,, ) 
ga(x, p) ~ ~, einjp ZBSG __q-I X, p , 

~j=o q 
qa = C>> 1 (4.4) 

when the fundamental set of S_ values is taken to be 0 ..... k -  1 (recall that 
periodic representations are invariant under overall shifts of S:). When one 
fuses such a spin-O representation with a spin-l/2 representation, the last 
relation in (2.14) still applies, but the new cyclic representations have 
shifted fundamental sets, 1 ..... k and - 1 ..... k - 2, respectively. Therefore the 
relation between Z, and ZBSG is slightly modified: 

Z ~ [ ( q - - q - l ) x , p ] =  
ei"I'ZBsG(qX, p) + e-i'~PZBsG(q -IX, p) 

ZBsG(X, P) 
(4.5) 

We assume this relation still holds for p real, where both sides are defined 
through (4.1). Plugging in the power series expansions into (4.5) gives the 
I2,,(p) in terms of the Q2,,(p). For example, 

sin gn 
I2(p) Qz(p) 

sin n(g + p) 

in agreement with (4.3). At next order, we find similarly 

4 sin3(7~g) Q4(p) = - 2  cos ng sin[n(2g + p)]  14(p) 

+ sin[n(g + p)]  I2(p) 2 (4.6) 

generalizing the p = 0  relations in ref. 15. This relation (4.5) has been 
checked, again by numerical determination of the TBA results for the 
Kondo model at nonzero magnetic field. 

The functional relation (4.5) extended to complex p implies even more 
than the Kondo partition function. For  example, we know on physical 
grounds [and from the definition (4.1)] that the Kondo partition function 
is even in p. Combining this with (4.5) then yields a nontrivial functional 
relation for ZBSG: 

ei'w[ZBsG(qx, p) ZBsG(X, - - p ) -  ZBSG(q--IX, --P) ZBsG(X, p)]  

= e i'~P[ZBsG(qX, -- p) ZBsG(X, p) -- ZBsG(q-- IX, P) ZBsG(X, -- P) ] 

(4.7) 
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Plugging in the perturbative expansion gives the values of the coefficients 
1 2 , ( - p )  in term of the I2,(P): 

I2(P) sin[(g + p)]  = I 2 ( - p )  sin[- n(g - p) ]  

/4(P) sin[(2g + p)]  - / 4 ( - P )  s i n [ n ( 2 g -  p) ]  = - sin(rip) O2(p) 1 2 ( - p )  

for example. 
In ref. 11 we made and checked a conjecture which related the linear- 

response conductance directly to the partition function. Our conjecture at 
general p = V/2T and g is 

V )  ignx 0 0 (Z"s~ ~ (4.8) 
a x,-~--~ = g -  20(V/--f~)-~xln\z,sG(x,-igp/n)J 

where we stress again that ZBSG is defined through (4.1), (4.2). We have 
checked this generalized expression numerically as well, by comparing it to 
the conductance from the Boltzmann equations in refs. 7 and 12 and below. 

As at V= 0, much is learned by comparing the perturbative and TBA 
analyses. The TBA equations (2.16) at g =  1/t are modified slightly in the 
presence of a finite voltage, yielding t n 2) 

ej = ~ Njks,_ l * ln( 1 + e~'ke ~k) (4.9) 
k 

where the incidence diagram is as in Section 2. A magnetic field corresponds 
to the chemical potentials p+ = _+p, Pk = 0 otherwise, and/.t - V/2T. The 
two end nodes of the incidence diagram now play a different role, but we 
still have e+ - -e_  - e , _  ~. The relation 

lnZj(x,p)=s,_l,ln(l+e~O, j = l  ..... t - - 2  

still holds. One also has 

lnZ,_t(x,p)=s,_ I �9 [ln(1 + et'e~'-') + l n ( l  + e-t 'e~'- ')]  (4.10) 

We then define 

1 I sinh[(t-1)l.t/t]]sinh(p/t) e-+Ue~'-') ln Z+(x ,p )=-~ ln  l + e  +-~' +s,_ l , l n ( l+  

(4.11) 
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Using the same identity (2.27) as for/~ = 0 yields 

s inh[ ( t - - l !~ / t ] ]  - t  
Z+_.(qmx,/.z) Z+_(q-l/Zx, lt) = 1 + e  -+~' sinh(/z/t) ] 

s inh~ Z 
Z,_  l - sinh(/t/t) + Z _  

where 

Y• = e •  ~'-~ 

Similarly, relation (2.31) becomes 

(1 + Y_+) 

(4.12) 

Z,(x, ~) = Z, _2(x, p) + 2 cosh l~, (4.13) 

since the two additional states in the spin-t representation have third com- 
ponent of the spin equal to _+ t. Fusion identities like (2.29) carry over to 
the case of finite voltage. Following the same arguments as for p = 0, one 
finds then 

Zl[  (q - q - l )  x, Ft] = e -I'/' Z +(qx, ~l) 
Z (x,/~) 

+e ~'/'Z-(q-lx'Fl) (4.14) 
Z +(x,/a) 

where we remind the reader that/~ = V/2T. 
The functions Z+_ are not obviously related to any Kondo-type 

integrals. Since there are technical obstacles to directly calculating the 
boundary sine-Gordon partition function in the presence of a voltage, we 
proceed using the algebraic approach. Comparing (4.14) and (4.5) suggests 
the functional relations 

ZBsc(qmx,  ilk~m) Z +(ql/2x,/1) 
ZBsG(q-I/ZX, il~/nt) Z_(q-I/2x,,Lt) 

(4.15) 

together with 

sinh(p/t) 
- -  Zt_l(X, fl ) (4.16) 

sinh IL 

Here we traded the p variable of (4.1) for the/~ variable. It is very likely 
that (4.16) has an algebraic origin. This is because the tensor product of 
two cyclic representations decomposes on pairs of (generally) indecom- 
posable representations, which in turn are related with the sp in - ( t -1 )  
representation of vanishing q dimension. However, we have failed in 
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finding a complete algebraic proof of (4.16), but we have checked it 
thoroughly by using the series expressions above for the ZBso and the 
numerical TBA results for Z ,_  ~. 

We can check that (4.15) is consistent with the conjectured relation 
(4.8) between the partition function and the conductance. Using the TBA 
and a kinetic equation, the conductance at integer t = 1/g is ~ ,2~ 

Using the identity 

T(t21)dd_v I dO 
cosh-'(t- I ) (0 -  ~) 

(. l+e"/2 e .... 
xln \1 +e-VlZre . . . .  i/ (4.17) 

lim [ 1 
x-0  cosh2(O+in/2--x) 

1 ] =-2in~'(O) (4.18) 
cosh2(O -- in~2 + x) 

it follows that 

/ 1I, V \ (q_ mx' 

inx 0 a /'. 1 +eV/2re ~'-' .'~ 
2t 8x O(V/2T----~) In \ 1 + e - v/2re~'-IJ (4.19) 

This allows a powerful check on the conjectures (4.8) and (4.15), because 
it also follows from substituting (4.15) into (4.8) and using the definition 
of Z + ,  (4.11). It would be nice to reverse the order of the proof and show 
that (4.19) (known to be true from the TBA) implies (4.8) and (4.15). This 
cannot be done by substituting the perturbative expansion because the 
relation (4.19) does not determine all of them uniquely; the order-x j' term 
vanishes on the left-hand side for any integer j. However, it is conceivable 
that by exploiting additional analyticity information it could be proven 
along the lines of ref. 31. 

In the linear-response limit V--+ 0, we can recover another functional 
relation from ref. 11. In this limit we can ignore the V dependence of ]7,_ 
because it is a function of V 2. Using (2.30), we recover 

G(ql/Zx, O)-  G(q-i/2x, O) 

8 1 
= ing2x 8XZBs6(ql/2x, O)ZBsG(q-I/2x, O) (4.20) 
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This formula is nice because it no longer has any reference to the TBA 
quantities e, so we expect it to hold for all g. 

We have a formula (4.16) which relates the product of ZBSG(II) and 
ZBsG( -- V) to TBA quantities, and a formula (4.8) which relates their ratio 
to TBA quantities by using (4.17). Therefore, we can infer a complete 
expression for Z~sc(X, It) alone in terms of the TBA quantities: 

t-2rrl d O [ l + e  2"- l J~~  l+e" ' - '~- ' -~e  - v / 2 r "  

where 

e" - ' "~  ( l+e"-'eV/2r ~ 
+1 + e  z ' ' - ' ' ' o - ~ ' l n  l + ~ ' - - 7 ~ 2 r J  3 (4.21) 

C e t  - I (  - -  : " -  ) 
sinh[(t  - 1 )lilt] 

sinh(It/t ) 

and e = ln(TB/T) and It = V/2T as always; x is related to 0~ via (2.20). 
It should be possible to derive this directly from the TBA, but there are 
some technical obstacles. 

Extending this analysis to the repulsive regime is more difficult. The 
reason is that for integer s in g = 1 - l/s, the value of S. at the top and 
bottom states of the spin-s representation still is _+s; not s / ( s -  1 ) as would 
be needed to carry over the algebra of the attractive regime straight- 
forwardly. This issue is related to the q versus - q - '  problem we had to 
address in Section 3.2. We find after some manipulation that 

ZBSG(ql/2X, ifl/gS) Z +(ql/2X, fl) 
m 

ZaSG( q - I/2X, Ot/gS) Z _  ( q - I/2x, ll ) (4.22) 

as above, but with, however, the new correspondence it = ( s -  1 ) V/2T. 
We can also propose a formula for the conductance in the repulsive 

regime. By using the conjectures (4.16) and (4.8) and the identity (2.27), we 
now deduce 

G(q'/2x, 2 ~ ) - G \ q  -x, ~-~j 

2 Ox O(V/2T) 
I 1 +e  ~'-t~ v/'-re . . . .  ' ] 

- -  In l+e_~.,.~-~;v--7~_Ve~ ' 
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from which we obtain 

) 1 V f - - -2-  ~ T d T )  G x, ~-~ cosh2(0 -  In 

{ ..... ,0 ,1  
xd(V~ ~ In I + e - r  --~i] 

1 + e  c ' - ~  v/'-re . . . .  ' ~  ] 
- In I 1- + e _~.,. _--Tf ~ , ]  } (4.23) 

By generalizing the result of Eq. (2.21) to nonzero V, one can check that 
these formulas give the correct limit G(0, V/2T) = ( 1 - 1/s). In the limit of 
vanishing voltage (linear response), one finds 

( s - l )  2 f 1 ( 1 1 ) 
G(x, O) dOcosh2( 0 ln T s / T )  + + "1 eC~ i o e ~ , -  ~l z i 2 l 

(4.24) 

This expression has been compared to real-time Monte Carlo simulations 
in ref. 32; the agreement is good. At T = 0 ,  it agrees with the expression 
derived in ref. 12. Using the identity (4.18) with (4.24) and using the TBA 
expression for the free energy from Section 3.2 yields the functional relation 
(4.20) in the repulsive regime, lending support to the conjecture that (4.20) 
holds for all g. 

5. C O N C L U S I O N  

It should be possible to use the identification of the boundary sine- 
Gordon model with a Kondo-type problem more completely than we have 
done. One way of doing so would be to write and solve the Bethe ansatz 
equations for an integrable system made of spins 1/2 and a cyclic impurity. 
Since (1.31 conserves the charge, unlike (1.2), this would allow one to 
handle directly the BSG model with a voltage, avoiding the lengthy series 
of functional identities of Section 4. 

Another interesting direction is to try to continue the perturbative 
Anderson-Yuval coefficients past g = 1 into the irrelevant regime. This can 
be done by our zeta-function trick of Section 3: use the explicit series 
expression to find out how the series is diverging, and subtract and add the 
appropriate Zeta function. This is straightforward but tedious, so we have 
not completed this program. For example, the duality~3~ g ~ 1/g should be 
explicitly observable. So far this duality has been established only at 
vanishing temperature Jill Observe, however, that such a way of handling 
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irrelevant operators does not involve any cutoff, and will not describe the 
nonuniversal physics depending on the cutoff (e.g., the dissipative quantum 
mechanics in ref. 33). However, our result does provide the interesting 
prospect of a well-controlled irrelevant perturbation theory, defined by an 
analog of dimensional regularization. 

APPENDIX.  DERIVING THE S M A T R I X  FOR 
B O U N D A R Y  S I N E - G O R D O N  

The boundary S matrix of the boundary sine-Gordon model was 
found in ref. 21 by analyzing the most general solution of the boundary 
Yang-Baxter equation. Here we show that this form also follows from the 
identification of the BSG model with a cyclic-spin anisotropic Kondo 
model. 

For the ordinary spin-j/2 Kondo model, the matrix for a particle 
scattering off the impurity is easy to obtain. Up to an overall proportionality 
factor which follows from crossing and unitarity, it is simply the standard 
Yang-Baxter solution for a spin ( j -  1 )/2 and a spin 1/2, and a renormalized 
quantum group parameter q = e  i'~g/ct -g)~34j  By analogy, we expect the S 
matrix for the cyclic spin case to be given (up to the overall factor) by the 
Yang-Baxter solution for a cyclic spin and a spin 1/2. This R matrix is an 
object studied long ago. ~ It is conveniently written as a matrix in Ht | Ha, 

where 

= (It.'oSo ,+ 2w3 S 3 2wlS_ "~ 
r \ 21.1 i S +  w o S o _  2w3S3, / (A.1) 

and 

a = s in  ( y + u ), b = s in  u, c = s i n y  (A.2) 

a + b  a - b  c 
w~ 2 ' w3= 2 ' w , = ~  

and in the cyclic representation, S_+ act as indicated above, while 

q" '  + q . . . .  

So  Im - q , /2  + q - 1/2 

q m D q - - m  

$3 I m - 2(ql/2 _ q-1/2) 



K o n d o  P r o b l e m  2 4 5  

I 

+ + 

m 

m§ / /  
U 

v I 
I 

I 

I 

+ - f § u I f 

Fig. 4. Configurations involved in checking the YB equation with two spins 1/2 and a cyclic 
representation. 
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Fig. 5. Configurations involved in checking BYB with no degree of freedom at the boundary. 
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Setting u = ( n / t ) ( � 8 9  and taking as above the limit q6= C>> 1, one 
finds the R matrix 

R +' "' = e - ~'q - " Jr-, n l  

- , , ,  + ~ = q - 7 1 1  

R +i"' (A.3) 
R Z:;;', = e - " q  "' 

R +:,];-, =qm 

The result of ref. 21 is that the boundary sine-Gordon S matrix provides a 
solution of the boundary Yang-Baxter equations of the form 

(e: 1) 
R = (A.4) e h, 

while (A.3) is a solution of the ordinary Yang-Baxter equation. To map the 
two, it is tempting to simply forget the cyclic degrees of freedom, which 
appear only as rapidity-independent phases. It is, however, not totally 
possible, and this has to do with the difference between BYB and YB 
even for massless particles. Indeed in a massless theory the left-right 
scattering is rapidity independent, but it might still involve some phases. As 
such, (A.4) solves BYB, but does not solve YB, because of the left-right 
scattering phases. When considering YB, there are no left-right scattering 
phases, so the equivalent terms are furnished by the cyclic degrees of 
freedom in (A.3). This is illustrated in Figs. 4 and 5. The complete 
translation shows that, if (A.3) satisfies YB, then (A.4) satisfies BYB 
indeed. In Figs. 4a-4c we consider a particular case of the YB equation 
involving the scattering of two spins 1/2 and a "cyclic" spin. The weight of 
the first figure is W~ = a ( u - v ) e - i " e  -~-~''', that of the second figure W 2 = 
b(u - v) e -~"e-~"/ 'e -"~"' + iv,, and that of the third W3 = ce Z"e-2i""'/'. The 
fact that YB holds means that W t = W_, + W 3. 

In Figs. 5a-5c we consider a particular case of the BYB equation 
involving a spin 1/2 bouncing off a boundary. The weight of the first figure 
is W'I = -~" e a z . L ( u - v ) a L n ( u - v ) ,  the weight of the second figure is W 2 = 
e-g"bt_t_(u- v) bLn(u -- v), and the weight of the third W~ = e - i " c n n ( u -  v) 
a L n ( u - v ) .  The fact that BYB holds means W] = W'_,+ W~, which one 
checks easily since the R R  elements are identical to the ones in (A.2) and 
aLn= l bLn e -iy O. , z , C L  R 
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NOTE ADDED IN PROOF 

The careful reader might have noticed that the magnetic field in the 
Kondo problem is coupled to the impurity spin only. This is equivalent to 
a field coupled to the total spin using results of J. H. Lowenstein, Phys. 
Rec. B 29 (1984), 4120. 
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